519 research outputs found

    How Phenol and α-Tocopherol React with Ambient Ozone at Gas/Liquid Interfaces

    Get PDF
    The exceptional ability of α-tocopherol (α-TOH) for scavenging free radicals is believed to also underlie its protective functions in respiratory epithelia. Phenols, however, can scavenge other reactive species. Herein, we report that α-TOH/α-TO^− reacts with closed-shell O_3(g) on the surface of inert solvent microdroplets in <1 ms to produce persistent α-TO−O_n^−(n = 1−4) adducts detectable by online thermospray ionization mass spectrometry. The prototype phenolate PhO^−, in contrast, undergoes electron transfer under identical conditions. These reactions are deemed to occur at the gas/liquid interface because their rates: (1) depend on pH, (2) are several orders of magnitude faster than within microdroplets saturated with O_3(g). They also fail to incorporate solvent into the products: the same α-TO−On^− species are formed on acetonitrile or nucleophilic methanol microdroplets. α-TO−O_n(=1−3)^− signals initially evolve with [O_3(g)] as expected from first-generation species, but α-TO−O^− reacts further with O_3(g) and undergoes collisionally induced dissociation into a C_(19)H_(40) fragment (vs C_(19)H_(38) from α-TO^−) carrying the phytyl side chain, whereas the higher α-TO−O_(n≥2)^− homologues are unreactive toward O_3(g) and split CO_2 instead. On this basis, α-TO−O^− is assigned to a chroman-6-ol (4a, 8a)-ene oxide, α-TO−O2^− to an endoperoxide, and α-TO−O3^− to a secondary ozonide. The atmospheric degradation of the substituted phenols detected in combustion emissions is therefore expected to produce related oxidants on the aerosol particles present in the air we breathe

    Absorption of Inhaled NO_2

    Get PDF
    Nitrogen dioxide (NO_2), a sparingly water-soluble π-radical gas, is a criteria air pollutant that induces adverse health effects. How is inhaled NO_2(g) incorporated into the fluid microfilms lining respiratory airways remains an open issue because its exceedingly small uptake coefficient (γ 10^(−7)−10^(−8)) limits physical dissolution on neat water. Here, we investigate whether the biological antioxidants present in these fluids enhance NO_2(g) dissolution by monitoring the surface of aqueous ascorbate, urate, and glutathione microdroplets exposed to NO_2(g) for 1 ms via online thermospray ionization mass spectrometry. We found that antioxidants catalyze the hydrolytic disproportionation of NO_2(g), 2NO_2(g) + H_2O(l) = NO_3^−(aq) + H^+(aq) + HONO, but are not consumed in the process. Because this function will be largely performed by chloride, the major anion in airway lining fluids, we infer that inhaled NO_2(g) delivers H^+, HONO, and NO_3^− as primary transducers of toxic action without antioxidant participation

    Proton Availability at the Air/Water Interface

    Get PDF
    The acidity of the water surface sensed by a colliding gas is determined in experiments in which the protonation of gaseous trimethylamine (TMA) on aqueous microjets is monitored by online electrospray mass spectrometry as a function of the pH of the bulk liquid (pH_(BLK)). TMAH^+ signal intensities describe a titration curve whose equivalence point at pH_(BLK) 3.8 is dramatically smaller than the acidity constant of trimethylammonium in bulk solution, pK_A(TMAH^+) = 9.8. Notably, the degree of TMA protonation above pH_(BLK) 4 is enhanced hundred-fold by submillimolar LiCl or NaCl and weakly inhibited at larger concentrations. Protonation enhancements are associated with the onset of significant direct kinetic solvent hydrogen isotope effects. Since TMA(g) can be protonated by H_2O itself only upon extensive solvent participation, we infer that H3O^+ emerges at the surface of neat water below pH_(BLK) 4

    Prompt Formation of Organic Acids in Pulse Ozonation of Terpenes on Aqueous Surfaces

    Get PDF
    A major atmospheric process, the gas-phase ozonation of terpenes yields suites of products via a cascade of chemically activated intermediates that ranges from primary ozonides to dioxiranes. If a similar mechanism operated in water, as it is generally assumed, such intermediates would be deactivated within picoseconds and, henceforth, be unable to produce carboxylic acids in microseconds. Herein, we report the online electrospray mass spectrometric detection of (M + 2O – H^+) and (M + 3O – H^+) carboxylates on the surface of aqueous β-caryophyllene (C_(15)H_(24), M = 204 Da) microjets exposed to a few ppmv of O_3(g) for < 10 μs. Since neither species is formed on dry solvent microjets and both incorporate deuterium from D_2O, we infer that carboxylates ensue from the interaction of nascent intermediates with interfacial water via heretofore unreported processes. These interfacial events proceed much faster than those in bulk liquids saturated with ozone

    Ozone Oxidizes Glutathione to a Sulfonic Acid

    Get PDF
    Biosurfaces are universally covered with fluid microfilms containing reduced glutathione (GSH) and other antioxidants whose putative roles include the detoxification of ambient ozone (O_3). It is generally believed that O_3 accepts an electron from the thiolate GS^(2-) function [pK_a(GS^-) = 8.8] of GSH to produce thiyl GS^(•-) radicals en route to the disulfide GSSG. Here, we report novel electrospray mass spectrometry experiments showing that sulfonates (GSO_3^-/GSO_3^(2-)), not GSSG, are the exclusive final products on the surface of aqueous GSH microdroplets exposed to dilute O_3(g) for ~1 ms. The higher reactivity of the thiolate GS^(2-) toward O_3(g) over the thiol GS^- is kinetically resolved in this time frame due to slow GS^- acid dissociation. However, our experiments also show that O_3 will be largely scavenged by the more reactive ascorbate coantioxidant in typical interfacial biofilms. The presence of GSSG and the absence of GSO_3^-/GSO_3^(2-) in extracellular lining fluids are therefore evidence of GSH oxidation by species other than O_3

    Superacid Chemistry on Mildly Acidic Water

    Get PDF
    The mechanism of proton transfer across water−hydrophobic media boundaries is investigated in experiments in which the protonation of gaseous n-hexanoic acid (PCOOH) upon collision with liquid water microjets is monitored by online electrospray mass spectrometry as a function of pH. Although PCOOH(aq) is a very weak base (pK_(BH+) < −3), PCOOH(g) is converted to PC(OH)_2^+ on pH < 4 water via a process that ostensibly retains some of the exoergicity of its gas-phase counterpart, PCOOH + H_3O^+ = PC(OH)_2^+ + H_2O, ΔG < −22 kcal mol^(−1). The large kinetic isotope effects observed on H_2O/D_2O microjets, PC(OH)_2^+/PC(OH)OD^+ = 88 and PC(OH)OD^+/PC(OD)_2^+ = 156 at pD = 2, and their inverse dependences on pH indicate that PCOOH(g) hydronation on water (1) involves tunneling, (2) is faster than H-isotope exchange, and (3) is progressively confined to the outermost layers as water becomes more acidic. Proton transfers across steep water density gradients appear to be promoted by both dynamic and thermodynamic factors

    Heterogeneous Reaction of Gaseous Ozone with Aqueous Iodide in the Presence of Aqueous Organic Species

    Get PDF
    The fast reaction of gaseous ozone, O_3(g), with aqueous iodide, I−(aq), was found to be affected by environmentally relevant cosolutes in experiments using cavity ring-down spectroscopy (CRDS) and electrospray ionization mass spectrometry (ESIMS) for the detection of gaseous and interfacial products, respectively. Iodine, I_2(g), and iodine monoxide radical, IO(g), product yields were suppressed in the presence of a few millimolar phenol (pK_a = 10.0), p-methoxyphenol (10.2), or p-cresol (10.3) at pH ≥ 3 but unaffected by salicylic acid (pK_(a2) = 13.6), tert-butanol, n-butanol, or malonic acid. We infer that reactive anionic phenolates inhibit I_2(g) and IO(g) emissions by competing with I−(aq) for O_3(g) at the air/water interface. ESIMS product analysis supports this mechanism. Atmospheric implications are discusse

    Weak Acids Enhance Halogen Activation on Atmospheric Water’s Surfaces

    Get PDF
    We report that rates of I_2(g) emissions, measured via cavity ring-down spectroscopy, during the heterogeneous ozonation of interfacial iodide: I^–(surface, s) + O_3(g) + H+(s) →→ I_2(g), are enhanced several-fold, whereas those of IO·(g) are unaffected, by the presence of undissociated alkanoic acids on water. The amphiphilic weak carboxylic acids appear to promote I_2(g) emissions by supplying the requisite interfacial protons H^+(s) more efficiently than water itself, at pH values representative of submicrometer marine aerosol particles. We infer that the organic acids coating aerosol particles ejected from ocean’s topmost films should enhance I_2(g) production in marine boundary layers

    Conversion of gaseous nitrogen dioxide to nitrate and nitrite on aqueous surfactants

    Get PDF
    The hydrolytic disproportionation of gaseous NO2 on water's surface (2 NO_2 + H_2O → HONO + NO_3- + H+) (R1) has long been deemed to play a key, albeit unquantifiable role in tropospheric chemistry. We recently found that (R1) is dramatically accelerated by anions in experiments performed on aqueous microjets monitored by online electrospray mass spectrometry. This finding let us rationalize unresolved discrepancies among previous laboratory results and suggested that under realistic environmental conditions (R1) should be affected by everpresent surfactants. Herein, we report that NO_2(g) uptake is significantly enhanced by cationic surfactants, weakly inhibited by fulvic acid (FA, a natural polycarboxylic acid) and anionic surfactants, and unaffected by 1-octanol. Surfactants appear to modulate interfacial anion coverage via electrostatic interactions with charged headgroups. We show that (R1) should be the dominant mechanism for the heterogeneous conversion of NO_2(g) to HONO under typical atmospheric conditions throughout the day. The photoinduced reduction of NO_2 into HONO on airborne soot might play a limited role during daytime
    corecore